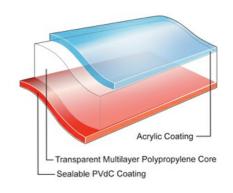
Bicor™ 150ASBX

Oriented Polypropylene Film


Jindal

Product Description

Bicor ASB-X is a two-side coated, sealable OPP film designed for broad use in many applications, including overwrap, horizontal, and vertical packaging. This film is suitable as an unsupported web or in a lamination. It can be surface printed, reverse printed, or used unprinted.

Key Features

- Outstanding optical properties
- · Robust machinability
- · Low and consistent COF
- Excellent flavor and aroma barrier
- Excellent heat seal strength and hot tack
- Very good moisture barrier
- Good oxygen barrier

General

Availability

Latin America

Features

Acrylic Coated

Gas Barrier

PVdC Coated

Applications

Biscuits/Cookie/Crackers

Uses

Box Overwrap Flexible Packaging

VFFS Flexible Packaging

Appearance

Clear/Transparent

Processing Method

Cold Seal Adhesive

Solvent Flexographic Printing

Water-based Flexographic Printing

North America

Flavor & Aroma Barrier

Moisture Barrier

Sealable PVdC Coated

Box Overwrap

HFFS Flexible Packaging

South America

In Lamination Lap Sealable

Oxygen Barrier

Confectionery, Sugar

Pre-made Bags - Flexible Packaging

Inner Web Adhesive Lamination

Solvent Rotogravure Printing

Outer Web Adhesive Lamination

Surface Print Unsupported

Properties & Typical Values

Property	Typical Value	Unit	Test Based On
Yield	27.7	m²/kg	Internal Method
Unit Weight	36.1	g/m²	Internal Method
Film Thickness	38	μm	Internal Method
Gloss (45°)	98	Gloss Unit	Internal Method
Haze	1.2	%	Internal Method
Tensile Strength at Break			
510 mm/min pull rate, 50 mm jaw separation			
MD	103	Мра	Internal Method
TD	216	Мра	Internal Method
Dimensional Stability 135°C / 275°F, 7 min			
MD	-4.5	%	Internal Method
TD	-3.0	%	Internal Method
Crimp Seal Strength			
PVdC/PVdC			
127°C, 0.1 Mpa, 0.75 sec	590	g/2.5 cm	Internal Method
Crimp Seal (MST)			
PVdC/PVdC	88	°C	Internal Method
Coefficient of Friction			
Acrylic/Acrylic	0.24		Internal Method
Water Vapor Transmission Rate			
38°C, 90% RH	3.6	g/m²/24 hr	Internal Method
Oxygen Transmission Rate			
23°C, 0% RH	70	cm ³ /m ² /24 hr	Internal Method

TYPICAL PROPERTIES: these are not to be construed as specifications

Food Contact

Any further regulatory information on this product (i.e. Food Contact application, Presence/absence of substances, Reach, ...) are accessible on the below link: https://www.jindalfilms.com/login-register-docmg/

Legal Statement

This product is not intended for or supported for use in pharmaceutical or medical applications requiring compliance with EU or US Pharmacopeia.

Processing Statement

- ASB-X is lap sealable to itself.
- Acrylic coating and its properties can be affected by extreme humidity and water condensation. Thorough testing is recommended when considering acrylic-coated films in refrigerated or frozen applications.
- · Acrylic coating must be primed if used in extrusion lamination.
- With PVdC coating, priming or treating is recommended for stronger extrusion bonds.
- Acrylic is an excellent surface for water-based or solvent-based inks, adhesives and code-dating (cold wet or hot stamp) without treatment.
- To avoid blocking, ghosting, high residual solvents, or decreased sealability, converters should eliminate the use of slow solvents (cellosolve, glycol ethers, MIBK, butanol, etc) when printing on acrylic surfaces. The use of esters should be minimized.

Footnotes

- 1. Product may not be available in one or more countries in the identified Availability regions. Please contact your Sales Representative for complete country availability.
- 2. Dimensional stability is reported for uncoated base film.
- 3. Tested at 38°C (100°F)/100%RH, then calculated to 90%RH with .90 multiplier.
- 4. Sample dimensions and conditioning vary due to differences in equipment design.

Revision date

• July 20, 2022

© 2023 Jindal Films. Jindal Films, Jindal Films, the Jindal Films' logo, and other product or service names used herein are trademarks of Jindal Films, unless indicated otherwise. You may not upload, display, publish, license, post, point to, frame, transmit or distribute either this document or its information, whether in whole or in part, without Jindal Films' prior written authorization. To the extent Jindal Films provides prior written authorization, the user may use the document on only if the document is unattered and complete, including all of its headers, footest, disclaimers and other information amy be based upon: analyses of representative samples and not the actual product spiped, typical values, or otherwise. The information in this document relates only to the named product or materials when not in combination with any other product or materials. We base the information on data believed to be reliable, but we do not represent, warrant, expressly or impliedly, the merchantality, fitness for a particular purpose, freedom from patent infringement, or suitability of the products, materials or process escribed. The user is solely responsible for all determinations regarding any use of material or products and any process in its estration of this information in this document. This document is not an endorsement of any non-Jindal Films' product process, and we expressly disclaim any contrary implication. The terms' "we," "our," "Jindal Films Americas LLC, Jindal Films Americas LLC, Jindal Films Mericas LLC, Jindal Films Nirton SPRL, Jindal Films India Ltd., or any companies affiliated with them in the production and sale of film products. There are a number of

